Замена полевого транзистора на видеокарте

РЕМОНТ ЦЕПИ ПИТАНИЯ ВИДЕОКАРТЫ NVIDIA

Всем привет! Сегодня будем ремонтировать видео карту GTX 650 от фирмы Gigabyte. Немного пред истории видеокарты. Нашел я на OLX её в нерабочем состоянии по заявленной неисправности нет картинки вентиляторы крутятся. Узнал у продавца, что она после нескольких сервисов, по фотографиям определил, что у нее паяли цепь питания видео ядра. И решил забрать её, так как большинство видеокарт с проблемами питания восстановимы.

После того как забрал её, сразу проверил дополнительное питание +12 вольт и там оказалось короткое замыкание 30 Ом. Откручиваю радиатор с полевых транзисторов цепи питания видео ядра и вижу, что на терморезине есть небольшой нагар.

Не выпаивая из платы проверяю полевые транзисторы мультиметром на присутствие короткого замыкания и нахожу один пробитый в верхнем плече преобразователя. Снял все полевые транзисторы, так как они все разные и не факт, что их не пробьет потом. Сразу после того как выпаял начал мерить сопротивления на карте.

Первый замер сделал на дополнительном питании +12 вольт, короткого замыкания на этом питании больше нет. Следующий замер сопротивлений сделал ядра и видеопамяти. Сопротивления по ядру 13 Ом по памяти 300 Ом. Судя по сопротивления чип больше жив чем мёртв.

Запаял более мощные полевые транзисторы с донорской карты на 30 В 100 А, старые были 30 В 30 А.

После замены включаю карту на тестовом стенде. Она запустилась, но не успела вывести картинку – блок питания ушел в защиту. Проверяю дополнительное питание +12 вольт и на этом питании короткое замыкание. И снова пробило полевой транзистор верхнего плеча одной из 2 фаз.

Выпаиваю этот полевой транзистор чтобы убедится в том, что видеочип жив, включаю карту на одной фазе. Карта запустилась, вывела картинку и даже установились драйвера.

Решил не мучить карту и найти причину пробоя полевого транзистора верхнего плеча. Начал проверять затворы верхних плеч до ШИМа. А точнее затворные резисторы верхних плеч питания. Проверяю сопротивления резисторов верхнего плеча на мертвой фазе сопротивление резистора бесконечность вместо 2,2 Ом (R595). На рабочей фазе ровно 2,2 Ома (R592).

После замены резистора и запайки на свое место полевого транзистора, ставлю карту на тестовый стенд. После включения карта вывела картинку. Ставлю на место все радиаторы и запускаю стресс-тест Furmark.

Следующий тест будет в 3Dmark06

Карта успешно проходит все стресс-тесты и полностью работает! Обсудить статью можно на форуме. Всем удачных ремонтов, с вами был kondensator.

Источник

Чем заменить полевой транзистор 4744n на видеокарте 8800GT GV-NX88T512HP.

Доброго времени суток.
На моей видяхе было КЗ, нашел мосфет 4744n R746 который коротил. У нас в Екатеринбурге такой экзотики нет, остается только искать по сервисам, вдруг у кого-нить на трупе найду. Решил поинтересоваться у вас у гуру. На что заменить можно его.
Вот datasheet:
icbase.com/pdf/ONS/ONS31520701.pdf

Смотрел по картинкам hothardware.com/image_popup.aspx?articleid=1107&image=big_gigabyte88gt_7b.
Радиатора сверху нет же. В принципе взять да поставить ДПАК на медный пенёк, исток с затвором проводочками (например выводами от кандёров или ещё чего там). Эстетики ноль, зато жить будет. Кстати, по топологии там поглядеть надо повнимательнее, мож и пенёк не пригодится и ДПАК ляжет сразу на плату, только затвор надо будет перехлеснуть проводом. Пенёк можно раздобыть в умершем транзисторе, только полирнуть место крепления кристалла и залудить.

. ложки нет

Спасибо за подсказку. Нашел у себя на сгоревшей матери MGXG 6030LX.
DPAK найти datasheet не могу только к нему(

. ложки нет

Не у всех есть возможность найти донор,и невсегда найдя приближенный он совпадает по цоколевке.

Сегодня нашел время и занялся видушкой,не зря,что очень приятно и морально и $
Скурив не один datasheet и просмотрев что есть в коробках под доноры и висяках,подобрал вот такую замену вместо 4744.
На 7600gt pci-e Manli нашел три BSC032N03S,на 9600GT Asus с битым GPU спрятались RJK0303DPB и BSC079N03S,но ее нестал дербанить тк возможно придет донор в виде GPU.

Не совсем идеальный по тех параметрам BSC032N03S в отличии от BSC079N03S,без проблем завелся и прошел все тесты-Aquamark,3DM 03/05/06,Unigine Heaven

P.S Не поленился,подстраховался и поставил доп охлаждение на mosfet-ы трех фаз питания проца.
КПТ нанес на полевички,радиаторы приклеил суперклеем через плотный тонкий картон к дросселям.

Источник

Мосфеты — проверка, подбор аналогов

Список форумов » Настольные компьютеры
На страницу 1, 2, 3, 4 След.
Следующая тема · Предыдущая тема

Автор Сообщение
LESHIY

#1 от 13/02/2011 08:34 цитата
MOSFET — Metal-Oxide-Semiconductor Field Effect Transistor — МОП полевой транзистор.

добавлю сразу на мосфеты серии АРМ****нужно обращать пристальное внимание

G-ЗАТВОР S-ИСТОК D-СТОК
мосфеты повсеместно используються как силовые транзисторы импульсных и линейных устройств стабилизаторов, регулирующие и переключающие устройства
в этой теме попробуем наглядно обьяснить
как проверить мосфет
как заменить и чем заменить
а так-же собрать минимум информации о аналогах и критичной замене, если получиться то и более

1. Kак проверить мосфет?
для того чтобы его правильно проверить нужно начать с замеров напряжений на них, для этого нужно знать какой мосфет за что отвечает, но замеры напруг это уже совсем другая тема
чтобы правильно проверить мосфет его нужно сначала выпаять либо отпаять ножки от платы, но делать это надо очень осторожно,так-как их просто можно выломать из корпуса
2. Как выпаять мосфет?
все это делают по разному, лично я термовоздушной станцией выпаиваю или нижним подогревом
если припой с свинцом то ставлю температуру300гр и как только припой поплывет снимаю пинцетом мосфет
с безсвинцовкой потяжелее , снимаю только нижним подогревом потому как боюсь перегреть сам транзистор
можно выпаять с помощью 2 паяльников, первым ватт на 60 разогреваем основу вторым отпаиваем ноги и им же снимаем мосфет
(лично я такой способ считаю лишней заморочкой), предлагают некоторые еще и такой вариант, разогрев ножки подсунуть под них кусочек лезвия, а потом отпаять основу
3. Выпаяли мосфет начинаем прозванивать
за образец возьмем наиболее распространенные мосфеты в корпусе ТО252аа или D2pak

1 ножка G-затвор, 2 ножка или основаD-сток,и3ножка S-исток
пример проверки покажу на обычном китайском мультиметре EM362

переключаем мультиметр в режим прозвонки диодов
и начинаем замерять падения напряжений
для N-channel mosfet
минусовой (черный) щуп ставим на подложку (D-сток), плюсовой(красный) на правый вывод мосфета (S-исток),тестер показывает падение напряжения на внутреннем диоде примерно около 500 миливольт(показания в зависимости от мосфетов могут быть разные),
полевик закрыт
теперь попытаемся открыть его, для этого не отрываясь черным щупом от подложки красным щупом касаемся левой ножки(G-затвор)
теперь опять переносим красный щуп на исток
тестер показывает падение напряжения равное 0, (если тестр с пищалкой то он вас развеселит своим подпискиванием)
если теперь черным щупом дотронуться до затвора и переставить его обратно к подложке, то мосфет снова должен показывать только падение напряжения на диоде
транзистор закрыт
для P-channel mosfet
проверяеться точно так же только щупы прибора между собой надо поменять местами
и если транзистор открылся и закрылся как описано здесь то радуйтесь мосфет рабочий
если же при прозвонке только вы прикоснулись щупами к транзистору и видите на табло тестера 0000, не переживайте сразу, попытайтесь сначала закрыть переход мосфета,(бывает и такое и довольно часто)
если вы нашли неисправный мосфет, а он стоит и работает в паре с другим то желательно поменять оба транзистора(так же если вы транзистор в одном плече заменили на аналог, то и второе плече надо менять на такой-же)
4. Как подобрать аналог
а что там подбирать то? качаем даташит
многое тут
и подбираем мосфет по параметрам
У аналога Vds и Vgs должны быть не меньше оригинала (больше можно), хотя более точно они должны быть больше входного напряжения плюс некоторый запас на броски (кто его знает какой запас уже был в оригинале), Id — не меньше оригинала (больше можно), Pd — рассеиваемая мощность.
Rds(on) чем меньше тем лучше, но если будет чуть больше чем у оигинала, не страшно (правда греться будет сильнее).
И НЕЛЬЗЯ ЗАБЫВАТЬ ЧТО ЕСЛИ ВЫ НАМНОГО ЗАВЫСИТЕ VDS
ТО СКОРОСТЬ СРАБАТЫВАНИЯ ТРАНЗИСТОРА СТАНЕТ МЕНЬШЕ
поэтому в импульсных цепях стараються подбирать мосфеты поточнее
о мосфетах
о moсфетах и аналогах

Strike

#2 от 18/02/2011 23:50 цитата
Мосфеты в линейных стабилизаторах:
Схемотехника довольно популярна и проста.
Усилитель ошибки на ОУ, (LM358,324 и др) или TL431., который управляет полевиком по затвору, открывая его ( отслеживая по обратной связи) , тем самым поддерживая постоянство выходного напряжения. 2.5в, 1.8в, 1.5в,1.2в, 1.06в.


Сгорел мосфет в линейном стабилизаторе, как подобрать аналог?

Полевики в данном случае можно разделить на 2 группы, различающиеся нормированным напряжением VGS (ON) , и сопротивлением открытого канала RDS(ON).
Дело в том что управляющую схему на ОУ конструкторы по желанию могут запитывать от 12в источника как и от 5в.
Это значит что усилитель ошибки может управлять полевиком по затвору от 0 до 9-10в, или от 0 до 4,5-4.,8в..

Смотрим даташиты, и в некоторых видим нормированное RDS(ON) при различных VGS (ON).

Если схема управления 5 вольтовая, придется тщательнее подбирать транзистор, по даташитам сравнивая RDS(ON)&VGS (ON) обращая особое внимание на VGS (ON) = 2,5в(4.5в).и RDS(ON) при этом напряжении.
Сравнив с даташитом «погорельца» — подбираем по характеристикам не худшим чем было.
Можно подбором, но нужно учесть, что в уже работающей схеме на затворе должно быть не более 4в ( лучше меньше) , для обеспечения запаса регулировки.

Если она 12 вольтовая , то практически любой мосфет с донорской матплаты , (с не меньшим током) сможет работать в этом участке..

Как определить какая схема использована в данном участке.
Очень просто, без полевика, включив аппарат — измеряем относительно «земли» напряжение на точке завтора в плате.,схема усилителя ошибки будет стремится максимально увеличить напряжение на затворе, пытаясь открыть мосфет (которого нет.. ).
Если мы видим около 9-10в, значит схема 12-вольтовая, параметры подбора сужаются.
Если не более 5в то схема управления 5-вольтовая.

Источник

О проверке полевых транзисторов импульсных цепей питания

При эксплуатации видеокарт с повышенной нагрузкой (например, при майнинге) иногда возникают ситуации, когда они выходят из строя. Частой причиной их поломки является неисправность элементов цепей питания. В случае, если какие-то транзисторы, конденсаторы или другие детали сгорели с образованием короткого замыкания, от пожара должен спасать блок питания, точнее его защита от КЗ (высокого тока).

Как правило, если у видеокарты имеется короткое замыкание по цепям, идущим от разъема дополнительного питания +12V, либо по напряжениям +3.3V/+12 со слота PCI-E, срабатывает защита блока питания и компьютер не включается. Если БП не имеет такой защиты, либо она не работает, то последствия могут быть очень печальными: появление возгораний, прогаров и других проблем, которые очень тяжело устранить.

В то же время, неисправность цепей питания видеокарт, не сопровождающаяся прогарами, достаточно легко устраняется даже специалистами среднего уровня подготовки.

В данной статье рассматривается последовательность действий по проверке исправности полевых транзисторов фаз питания видеокарт, которые приводят к срабатыванию защиты блока питания компьютера.

Выявление причин неисправности видеокарты, которая не дает компьютеру включиться

При установке видеокарты с коротким замыканием по питанию в материнскую плату (либо в райзер), при включении компьютера блок питания уходит в защиту.

Для уточнения причин неисправности в первую очередь нужно проверить сопротивление на разъеме дополнительного питания +12 вольт и контактах +3.3 и +12 вольт на контактах PCI-E видеокарты.

Если сопротивление очень мало или равно нулю, то это свидетельствует о выходе из строя каких-то элементов в цепях питания видеокарты.

Для нахождения причин проблемы нужно произвести внимательный осмотр деталей на плате на предмет потемнений, повреждений, обуглений и других отклонений от нормы.

Частой причиной короткого замыкания является использование некачественных керамических конденсаторов в цепях питания. Они иногда выходят из строя с образованием участка с очень малым сопротивлением. Подробнее о таких проблемах можно прочитать в статье «Устранение типичной неисправности в цепи питания Sapphire Radeon RX400/500-й серий».

Если визуальный осмотр не дает никаких результатов, нужно приступать к проверке сопротивлений подозрительных электронных элементов в цепях питания видеокарты.

Наиболее частой причиной появления проблем, связанных с появлением коротких замыканий, являются пробои полевых транзисторов фаз питания. Точно проверить их исправность можно только выпаяв их с печатной платы, хотя у пробитого полевого транзистора выявить короткое замыкание можно и не снимая его с платы. Для оценки состояния полевых транзисторов используется измерение сопротивления, а также падение напряжения между выводами.

О роли полевых транзисторов в импульсных источниках питания

В современных видеокартах в качестве ключевых элементов импульсных фаз питания чаще всего используются n-канальные полевые транзисторы с изолированным затвором.

Полевые транзисторы являются электронными ключами, обеспечивающими работу фаз питания видеокарт (картинка с сайта techpowerup):

Это активные электронные компоненты с МОП-структурой (металл-окисел-полупроводник), в которых используется полевой эффект.

На английском языке их называют MOSFET-транзисторами (Metal-Oxide-Semiconductor-Field-Effect-Transistor):

MOSFET-транзисторы еще называют МДП-транзисторами (структура метал-диэлектрик-полупроводник), МОП-транзисторами (структура метал-окисел-полупроводник).

Упрощенная структура n-канального полевого транзистора:

N-канальные транзисторы имеют три вывода:

  • G-gate (затвор) — служит для управления состоянием транзистором (аналог сетки электронных ламп или базы на биполярных транзисторах);
  • D-drain (сток) — является входом управляемой электрической цепи (аналог коллектора биполярных транзисторов);
  • S-source (исток) — выход управляемой электроцепи (аналог эмиттера у биполярных транзисторов).

Типовая электрическая схема N-канального полевого MOSFET-транзистора:

Как видно из схемы, между истоком и стоком n-канального полевого транзистора (иногда) включается диод. Это элемент, который должен защищать транзистор от всплесков обратного напряжения, вызванных переходными процессами на индуктивной нагрузке фаз питания при выключении транзистора. Он должен гасить на себе всплеск напряжения от катушки индуктивности в момент закрытия транзистора.

MOSFET-транзисторы выпускаются в четырех видах корпусов:

  • для поверхностного монтажа — TO-263, TO-252, MO-187, SO-8, SOT-223, SOT-23, TSOP-6 и другие;
  • с проволочными выводами — TO-262, TO-251, TO-274, TO-220, TO-247 и другие;
  • DirectFET — DirectFET M4, DirectFET MA, DirectFET MD, DirectFET ME, DirectFET S1, DirectFET SH и другие;
  • PQFN — PQFN 2×2, PQFN 3×3, PQFN 3.3×3.3, PQFN 5×4, PQFN 5×6 и другие.

Виды корпусов MOSFET-транзисторов:

Чтобы проверить полевые транзисторы, нужно знать хотя бы на базовом уровне их устройство, принцип работы, назначение выводов и какое сопротивление должно быть между ними в выключенном состоянии.

Как работают ключевые MOSFET-транзисторы в фазах питания импульсных цепей питания

N-канальные транзисторы обычно открываются путем подачи на затвор положительного потенциала.

Упрощенный пример подключения нагрузки через MOSFET-транзистор (Enhancement-типа):

В данной схеме для того, чтобы n-канальный MOSFET-транзистор заработал, к его стоку(drain) необходимо подать позитивное напряжение Vdd, а на затвор (gate) — минимальное напряжение Vg. После этого n-канал между стоком-истоком откроется, по нему потечет ток от стока (+Vdd) к истоку (минусовой вывод) — транзистор перейдет во включенное, открытое состояние.

Иллюстрация работы n-канала, образующегося при открытии MOSFET-транзистора:

Чтобы выключить MOSFET, нужно отключить напряжение Vdd или Vg.

Более подробно о работе импульсных фаз питания можно почитать в статье «Как работает VRM материнских плат».

Как омметром проверить полевой транзистор?

Исходя из логики работы рассмотренного полевого транзистора, в закрытом состоянии он не должен проводить ток между стоком-истоком, то есть его сопротивление должно быть очень велико.

В связи с тем, что между выводами сток-исток включен диод, сопротивление между этими выводами будет значительно отличаться при разной полярности щупов омметра. Если к истоку (source) подключить плюсовой вывод, а на сток (drain) — минус, то сопротивление будет очень маленьким — оно должно соответствовать внутреннему сопротивлению диода (здесь можно измерять падение напряжения на его переходе). При обратной полярности (на истоке — минус, ан стоке — плюс) сопротивление должно быть очень большим.

Сопротивление между затвором и стоком, а также затвором-истоком должно быть очень большим, так как затвор электрически изолирован от других выводов.

При подаче на затвор небольшого положительного потенциала (например, от плюсового вывода щупа мультиметра) транзистор должен открываться, а сопротивление между всеми выводами — падать практически до нуля (в связи с этим поведение открытого полевого транзистора похоже на пробитый элемент с коротким замыканием). Закрыть транзистор после этого можно путем подачи отрицательного потенциала на затвор.

Для исключения влияния других электронных элементов, лучше всего транзисторы проверять в отпаянном от платы состоянии. Так как это не всегда удобно делать, то оценить состояние транзисторов приходится не снимая их с видеокарты (другого устройства). Перед проверкой следует обнулить заряд затвора (G), кратковременно замкнув его с истоком (S).

Для этого мультиметром в режиме измерения сопротивления измеряется его значение между стоком (drain) — истоком (Source). Если щуп минуса находится на стоке (drain, подложка MOSFET-а), а плюс — на истоке (S), то транзистор, находящийся в закрытом состоянии должен показывать высокое сопротивление (что соответствует падению напряжения, равному сотням милливольт).

В качестве практического примера проверки полевых транзисторов VRM рассмотрим видеокарту Nvidia GeForce GTX950.

Практическая проверка полевых транзисторов на печатной плате видеокарты

На видеокарте Nvidia GeForce GTX950 (модель Strix от фирмы ASUS) используется 4 фазы питания GPU и 1 фаза для VRAM (аналогичная схемотехника используется и во некоторых других видеокартах Nvidia).

Четыре фазы питания GPU у видеокарты GeForce GTX950 собраны на транзисторах M3056M (две штуки, формирующие нижнее плечо фазы питания) и одного M3054M (верхняя фаза). Три фазы управляются ШИМ-контроллером uP9501P (справа вверху на изображении), еще одна — uP1959R:

Одна фаза питания памяти видеокарты Nvidia GeForce GTX950 состоит из двух полевых транзисторов M3056M и одного M3054M под управлением ШИМ-контроллера uP1541P:

Полевые транзисторы M3056M выпускаются в корпусе с восемью выводами типа QFN-8. Это N-канальные MOSFET-транзисторы со следующими параметрами:

  • напряжение сток-исток, при котором наступает пробой (BVDSS) = 30V;
  • сопротивление сток-исток открытого канала (RDSON) = 4.2 mΩ;
  • максимальный продолжительный, непрерывный ток стока (Id) = 103A.

Полевые транзисторы M3054M имеют следующие параметры:

  • напряжение сток-исток, при котором наступает пробой (BVDSS) = 30V;
  • сопротивление сток-исток открытого канала (RDSON) = 4.8 mΩ;
  • максимальный продолжительный, непрерывный ток стока (Id) = 97A.

Распиновка полевых транзисторов M3054M/M3056M:

Для проверки этих транзисторов нужно замерить сопротивление в обоих направлениях (падение напряжения) между выводами сток-исток (drain-source) — оно должно быть очень большим при включении плюсового щупа на исток и показывать сопротивление диода при обратном соединении. Иногда защитный диод отсутствует, поэтому сопротивление в обеих направлениях большое.

Для уменьшения времени, затрачиваемого на проверку ключевых транзисторов фаз питания следует учитывать, что наиболее часто выходят из строя транзисторы, работающие в качестве верхнего ключа.

У видеокарты GeForce GTX950 при первоначальной диагностике было диагностировано аномально низкое сопротивление по линии +12 вольт из слота PCI-E (около 6 Ом)

Измерение сопротивления транзисторов фаз питания GPU показало пробой транзисторов M3054M (верхние плечи) двух фаз питания, расположенных ближе к разъему PCI-E (сопротивление около 6 Ом в обеих направлениях), а также одного транзистора M3056M нижнего плеча (сопротивление 0.5 Ом в обеих направлениях). Такие же исправные транзисторы двух верхних фаз на плате показывали сопротивление, близкое к бесконечности.

Неисправные транзисторы фаз питания, выявленные путем измерения сопротивления сток-исток на печатной плате видеокарты:

После выпаивания и замены неисправных транзисторов аномально низкое сопротивление по линии +12 вольт со слота PCI-E, приводящее к срабатыванию защиты в блоке питания ушло. Обычно при такой неисправности вылетает и ШИМ-контроллер, который рекомендуется заменить, даже если он чудом выжил.

Заключение

Чтобы избежать выхода из строя полевых транзисторов фаз питания, работающих в импульсном режиме, нужно обеспечить выполнение следующих условий:

  • значения напряжений, возникающих на участках затвор-исток (Ugs), сток-исток (BVDSS), а также ток Id, проходящий через транзистор, не должны выходить за лимиты, предусмотренные в datasheet. При этом нужно учитывать импульсы, вызванные нелинейными процессами в источниках питания, в том числе те, которые гасятся варисторами/термисторами;
  • при работе транзисторов должен быть обеспечен оптимальный температурный режим, не выходящий за рамки предусмотренных производителем ограничений. В связи с этим при майнинге не стоит жалеть вентиляторов видеокарт, которые по умолчанию настроены на работу с минимальным шумом. Для уменьшения температуры на видеокартах при майнинге и во время других интенсивных режимов нужно использовать сторонние утилиты, управляющие их системой охлаждения;

При поиске неисправностей в импульсных фазах питания стоит учитывать, что наиболее частой причиной выхода из строя MOSFET-транзистора является короткое замыкание (пробой) между истоком и стоком. При этом внутри транзистора очень сильно поднимается температура, расплавляется кристалл и металлические элементы, что может повредить близлежащие электронные элементы и прожечь печатную плату вместе с проводящими слоями.

Для уменьшения вероятности пробоя транзисторов следует обеспечивать запас по напряжению BVDSS у транзисторов фаз питания, в расчете на возможное повышение рабочего напряжения во время бросков тока/пиковых нагрузок. Это важно учитывать при ремонте и замене неисправных полевых транзисторов на аналоги. Кроме того, для обеспечения щадящего режима работы транзисторов фаз питания, в импульсных цепях питания должны быть установлены необходимые сглаживающие и блокировочные конденсаторы (в рабочем состоянии).

Источник

Читайте также:  Nvidia inspector failed to import
Adblock
detector