- Что такое G-Sync, FreeSync, V-Sync и HDMI VRR? — Разбор
- V-Sync
- G-Sync
- VESA Adaptive Sync
- AMD FreeSync
- G-Sync Compatible
- Итоги
- Обзор технологии NVIDIA G-Sync и монитора ASUS ROG SWIFT PG278Q
- ⇡#G-Sync: зачем это нужно
- ⇡#G-Sync: как это работает
- ⇡#Adaptive Sync — альтернатива G-Sync
- ⇡#ULMB (Ultra-Low Motion Blur)
- ⇡#ASUS ROG SWIFT PG278Q: технические характеристики, цена
- ⇡#Комплект поставки
- ⇡#Внешний вид
- ⇡#Методика тестирования
- ⇡#Выводы
Что такое G-Sync, FreeSync, V-Sync и HDMI VRR? — Разбор
Всех ПК-геймеров планеты Земля, да и консольных игроков тоже, объединяет одна проблема — вертикальные разрывы изображения. И вроде бы есть куча технологий которые решают эту проблему:
- V-Sync,
- G-Sync,
- FreeSync
- А ведь еще есть Adaptive Sync
- А в HDMI 2.1 недавно добавили VRR.
Но легче от этого не становится. Только больше путаешься. Чем все эти технологии отличаются? Какую выбрать видеокарту и монитор? И будет ли это всё работать на телевизоре?
Давайте сегодня раз и навсегда разберемся в технологиях адаптивной синхронизации изображения.
Для тех кто не в курсе. А в чём собственно проблема?
Чтобы изображение появилось на экране, должно произойти, как минимум, две вещи:
- графический процессор должен подготовить кадр и передать его на монитор,
- ваш монитор должен показать этот кадр.
Вроде бы всё просто! Но тут кроется небольшой конфликт. Монитор работает по строгому расписанию. Нужно обновлять изображение на экране через равные промежутки времени, строго определённое количество раз в секунду. Этот параметр называется частотой обновления и измеряется он в герцах.
Обычные мониторы работают на частоте 60 Гц, то есть способны выводить 60 кадров в секунду, а игровые на 144 Гц и выше.
А вот графический процессор живет в совершенно ином мире. В играх постоянно всё меняется: колышется листва, журчит ручеёк, враги выпрыгивают из-за угла. Каждый кадр отличается по своей сложности, поэтому на их просчет уходит разное количество времени.
Иными словами, у монитора частота кадров постоянная, а у видеокарты переменная.
Вот и выходит, что за один цикл обновления монитора видеокарта может подготовить больше одного кадра или меньше.
Из-за этого мало того что страдает плавность картинки, так еще и появляются артефакты в виде вертикальных разрывов изображения. Кстати, при просмотре фильмов тоже могут появляться такие артефакты, потому что кино снимают в 24 к/с.
V-Sync
Очевидно проблема требовала решения, и еще на заре компьютерных игр оно появилось! Название у этого решения — вертикальная синхронизация или V-Sync. Наверняка вы встречали такую опцию как в настройках видеокарты, так и в играх.
Работает эта штука достаточно топорно. Фактически она просто принуждает видеокарту выводить кадры с частотой кратной частоте обновления экрана. Например, если у вас монитор 60 Гц, то максимальное количество кадров в секунду тоже будет 60, даже если ваша видеокарта способна на большее. И в общем-то часто такое ограничение вполне уместно, если у видеокарты хватает мощи и нет просадок ниже 60 к/с, но если они есть — начинаются проблемы.
При включенной вертикальной синхронизации, следующее кратное значение — это 30 к/с. Поэтому даже если ваш фреймрейт просел фактически всего на пару кадров, вы всё равно увидите падение до 30 к/с. Такой перепад мало того, что большой и очень визуально ощутимый, так ещё и будет происходить с небольшим лагом. Поэтому если стабильного FPS в 60 к/с или 30 не достичь, то включать V-Sync вообще нет никакого смысла.
Справедливости ради, чем выше герцовка монитора, тем больше мы имеем кратных значений, на которых может работать синхронизация. Поэтому на игровых мониторах V-Sync работает куда лучше.
Но история с кратными значениями — не самая главная проблема технологии. Есть другой неочевидный недостаток: вертикальная синхронизация — увеличивает задержку ввода, то есть создаёт Input Lag.
Игра медленнее реагирует на ваши действия, всё происходит с задержками и как-то плывёт в молоке, поэтому прицелиться становится гораздо сложнее. Почему так происходит?
Это интересно, смотрите! Каждый кадр рассчитывается и выводится на экран через один и тот же конвейер. Упростим его до трёх этапов.
- Каждое ваше действие, например щелчок мышки надо как-то интерпретировать и обновить состояние игры. За это отвечает центральный процессор (синяя полоса на картинке ниже). Центральный процессор подготавливает кадры для графического процессора и помещает их в очередь рендеринга графического процессора.
- Затем графический процессор (зелёная полоса) берет эти подготовленные кадры из очереди и рендерит их.
- Только потом эти кадры выводятся на дисплей (серая полосочка на картинке).
Ну и в чём проблема, спросите вы? Дело в том, что ЦП не берется за подготовку следующего кадра, пока предыдущий не будет выведен на экран. Поэтому ограничивая количество выводимых кадров в угоду синхронизации с дисплеем, мы фактически увеличиваем задержки с которыми обновляется состояние игры! И если в каких-то простеньких играх типа пасьянса такие вещи допустимы, то в соревновательных играх вертикальная синхронизация может стать серьёзной помехой.
G-Sync
Но переживать не стоит, так как решение появилось еще в 2013 году. Именно тогда компания NVIDIA представила свою технологию адаптивной синхронизации — G-Sync. В отличие от старой технологии, G-Sync позволяет подстраивать не видеокарту под частоту обновления монитора, а наоборот заставляет монитор менять свою частоту под видеокарту!
Представляете? Так тоже можно было!
В результате мы получаем потрясающе плавную картинку без вертикальных разрывов и задержки ввода! Просто сказка! G-Sync также работает в огромном диапазоне частот. Изначально это было от 30 до 144 Гц, а сейчас уже есть поддержка до 360 Гц и может даже выше, тут скорее всё зависит от монитора.
А если фреймрейт падает ниже 60 Гц G-Sync умеет дублировать пропущенные кадры.
Получаются сплошные плюсы и проблема решена еще в 2013 году? Так почему же мы до сих пор об этом говорим?
Ну как сказать. Во-первых, эта технология закрытая, соответственно, G-Sync работает только с карточками NVIDIA, но это пол беды.
Все волшебные функции G-Sync стали возможны благодаря специальному чипу, который необходимо встроить в монитор. Естественно, эти чипы производит тоже NVIDIA и стоят они недешево. Поэтому мониторы с поддержкой G-sync в среднем стоят на 250-300$ дороже и таких моделей очень мало. То есть получилась классная, и для 2013 года революционная технология, но не универсальная и дорогая.
VESA Adaptive Sync
Поэтому уже спустя год, в 2014, Ассоциация стандартизации Video Electronics Standards Association или VESA представила открытую технологию Adaptive Sync, которая умеет, в принципе, всё то же самое, что и G-Sync, но без дорогостоящих чипов и работает на частотах от 9 до 240 Гц! Неплохо да?
Но для внедрения технологии нужно, чтобы её поддержку внедрили в прошивку и драйвер монитора, драйвер видеокарты, операционной системы и в игры!
А также необходимо наличие DisplayPort версии не ниже 1.2a, так как технология стала частью именно Display Port. Как видите, чтобы технология взлетела, нужно было проделать много работы. И этой работой занималась компания AMD.
AMD FreeSync
В 2015 году AMD внедрили Adaptive Sync в драйвера своих видеокарт и назвали технологию FreeSync. Реализация от AMD быстро получила очень широкое распространение. Добавить поддержку FreeSync в монитор оказалось настолько дешево, что сейчас сложнее найти игровой монитор без этой фичи, чем с ней.
Но AMD не остановились на просто внедрении стандарта от VESA. Также они добавили поддержку HDMI, начиная с версии 1.4. А в 2017 выпустили FreeSync 2, в который добавилась поддержка HDR и компенсацию низкой частоты кадров, как в G-SYNC.
Кстати, чуть позже, FreeSync 2 переименовали в более элитное FreeSync Premium Pro, а обычный FreeSync для мониторов с частотой 120 Гц и выше стали называть FreeSync Premium. Хотя такие маркетинговые финты я не одобряю, но в остальном сплошной респект AMD за популяризацию стандарта.
Кстати, NVIDIA также в 2017 году добавила поддержку HDR и назвала это всё G-Sync Ultimate.
И вроде бы всё классно, в команде у красных и у зеленых есть по своей шикарной технологии. Но что делать, если у тебя видеокарта от NVIDIA, ты хочешь нормальную поддержку G-Sync, но покупать дорогущий монитор с этой технологией совсем не хочется? Или наоборот — не покупать же Radeon только потому что у тебя монитор с FreeSync?
До недавнего времени выбора не было никакого. Хочешь подешевле и побольше выбор мониторов — покупай Radeon. В другом случае, придется раскошелиться.
G-Sync Compatible
Но в 2019 году NVIDIA пошли навстречу покупателям и добавили поддержку стандарта VESA Adaptive Sync в драйвера для своих видеокарт серии RTX, а также для карточки GTX 1080. А значит теперь можно легко насладиться лучшим из двух миров: взять себе карточку от NVIDIA и монитор с FreeSync по вкусу. Вот только есть проблема. Если на FreeSync мониторе не написано G-Sync Compatible — значит он не был протестирован NVIDIA на совместимость и никаких гарантий, что всё будет работать нормально, вам никто не даёт. А NVIDIA тестирует далеко не все, и далеко не самые доступные модели.
Поэтому инициативу по тестированию в свои руки взяло интернет-сообщество. Они составили табличку с огромным списком протестированных пользователями мониторов.
С мониторами, кажется, разобрались. Но как быть, если хочется поиграть на большом экране телевизора через консоль или ПК. Будет ли работать адаптивная синхронизация? Спешу вас порадовать — будет! При условии что ваш ТВ оснащен портом HDMI версии 2.1, в который добавили технологию переменной частоты обновления VRR — Variable Refresh Rate.
Причём всё будет работать и с видеокартами от NVIDIA и с Radeon. Всё потому, что VRR — это та же самая технология VESA Adaptive Sync, но теперь она стала ещё и частью стандарта HDMI 2.1. Именно таким образом адаптивная синхронизация реализована в консолях нового поколения. А также, вы удивитесь, в Xbox One S и One X. Да, в коробки текущего поколения от Microsoft VRR завезли даже раньше, чем HDMI 2.1.
Итоги
Что, в итоге спустя 6 лет после своего появления, технология Adaptive Sync стала фактически отраслевым стандартом. Захватив видеокарты от AMD и NVIDIA, телевизоры и даже интегрированная графика от Intel в 11-м поколении процессоров теперь поддерживает эту технологию. А это значит, что в светлом будущем мы будем жить без единого разрыва, по крайней мере, вертикального!
Обзор технологии NVIDIA G-Sync и монитора ASUS ROG SWIFT PG278Q
Герой нашего обзора, ASUS ROG SWIFT PG278Q, — один из первых мониторов, в которых реализована новая технология G-Sync, созданная компанией NVIDIA. Кроме того, это первый и пока единственный монитор c разрешением WQHD (2560х1440), поддерживающий частоту обновления 144 Гц, а следовательно, способный выводить стереоскопическое изображение при помощи затворных очков.
⇡#G-Sync: зачем это нужно
Главное, что нас интересует в ASUS PG278Q, — это, конечно же, G-Sync. Но перед тем как приступить к ее описанию, вспомним, какие именно задачи данная технология должна решать и какие средства для этого уже появились ранее.
Если вкратце, то у мониторов есть две проблемы, которые каждый легко может заметить в 3D-играх. Во-первых, это разрывы кадра, выглядящие как сдвиг части изображения по горизонтали. Во-вторых, «фризы» — кратковременные провалы частоты смены кадров, которые практически неизбежно возникают при включении вертикальной синхронизации — технологии, устраняющей разрывы. Таким образом, в зависимости от того, готовы ли мы пользоваться V-Sync, мы сталкиваемся либо с одной, либо с другой проблемой, но, чтобы устранить их одновременно, нужно совершенно новое решение. Это и есть G-Sync.
Читателям, которые не удовлетворились столь поверхностным описанием, предлагаем разобраться в вопросе более подробно. Благо здесь все довольно просто. Начнем с пресловутых разрывов. Несмотря на то, сколь четко выглядит разрыв, существует он только на экране монитора — в памяти видеокарты кадры целые. Дело в том, что графические адаптеры с довольно давних времен используют два кадровых буфера — адресных пространства, в которых формируется изображение. В то время как монитор получает содержимое одного буфера (называемого front buffer), видеоадаптер создает следующий кадр во втором буфере (back buffer). Когда кадр готов, буферы меняются местами таким образом, что бывший back buffer становится front buffer — и наоборот.
Без вертикальной синхронизации буферы меняются местами сразу после того, как финализируется новый кадр, а это может занять совершенно различное время в зависимости от того, насколько сложна вычислительная задача. В то же время монитор обновляет изображение с регулярным периодом (типичное значение для ЖК-панелей — 50/60 Гц), да вдобавок обновление происходит не мгновенно, потому что содержимое нового кадра выводится на экран строка за строкой — сверху вниз. Поскольку без V-Sync частота смены кадров в графическом адаптере не привязана к циклу обновления монитора, буферы могут поменяться местами в процессе очередного обновления, и, если содержимое кадров, которые в них находятся, различается, возникает видимый невооруженным глазом разрыв. Или даже множественные разрывы — если производительность настолько велика, что буферы успели поменяться несколько раз в течение одного цикла обновления.
Вертикальная синхронизация, как следует из названия, синхронизирует смену кадровых буферов с циклом обновления экрана. Видеоадаптер по-прежнему занимается подготовкой очередного кадра в back buffer в то время, когда монитор считывает и выводит на экран содержимое предыдущего кадра из front buffer, но перемена произойдет только перед началом следующего цикла обновления — получается, что видеокарта ждет, пока монитор будет готов. Таким образом V-Sync полностью устраняет одну проблему — разрывы, но вызывает новую — «фризы». Пока система обладает достаточной производительностью, чтобы время подготовки кадра в back buffer не превышало период обновления экрана, у нас все хорошо. Но если следующий кадр задерживается к моменту нового цикла обновления, смены буферов не происходит — и на экран повторно выводится старый кадр. В динамике это воспринимается как кратковременное застревание картинки — «фриз». И хотя средняя частота смены кадров может быть очень высокой, для появления «фриза» достаточно, чтобы отдельно взятый кадр хоть немного запоздал — время его подготовки к выводу на экран удвоится.
Частота обновления 120 Гц и более компенсирует эту проблему (равно как и разрывы в некоторой степени). Кадры, запаздывающие к циклу обновления при частоте 60 Гц, получают 17 мс задержки, а при частоте 120 или 144 Гц минимальный штраф снижается до 8 и 7 мс соответственно.
Другой негативный аспект V-Sync — увеличение времени реакции. Пока монитор считывает изображение из front buffer, видеоадаптер может создать только один новый кадр в back buffer. Без V-Sync — если производительность позволяет — буферы могут поменяться несколько раз в течение одного цикла обновления. В результате следующий цикл начнется с вывода наиболее современной информации. С V-Sync время реакции не может быть меньше периода обновления экрана (который при частоте 60 Гц составляет около 17 мс).
В принципе, последняя проблема также решается повышением частоты обновления до 120 или 144 Гц. Другой вариант — так называемая тройная буферизация (Triple Buffering). В отличие от стандартной логики с двумя буферами — front buffer и back buffer, при тройной буферизации с V-Sync видеоадаптер может создавать сколько угодно кадров в двух чередующихся back buffers, пока монитор обновляет кадр из зафиксированного front buffer. А когда наступает очередной цикл обновления, на экран попадает информация из того back buffer, который содержит наиболее свежий полностью сформированный кадр. Впрочем, по неким причинам это не очень популярная технология. Соответствующая опция есть далеко не во всех играх, и драйверы GPU позволяют ее форсировать только для OpenGL-, но не DirectX-игр. Разве что есть утилита D3DOverrider для NVIDIA, которая может это сделать. Корректной работы никто не гарантирует, но мы, по крайней мере, советуем испытать ее на собственном опыте.
Приступая к G-Sync, напомним, что для NVIDIA это не первая подобная инициатива. Ранее GPU с архитектурами Kepler и Maxwell получили технологию под названием Adaptive V-Sync. Судя по тому поверхностному описанию, которое предоставила NVIDIA, при Adaptive V-Sync вертикальная синхронизация активна, если частота смены кадров превышает 60 FPS, и отключается при падении частоты ниже этой отметки, дабы предотвратить «фризы» (пусть и ценой разрывов). В публичном доступе нет описания работы Adaptive V-Sync на уровне отдельных кадров, но нетрудно предположить, как это может быть сделано. А именно: если в то время, как монитор выводит содержимое кадра из front buffer, в back buffer сформировался новый кадр, смена буферов не происходит вплоть до начала следующего цикла обновления. Но если кадр в back buffer опоздал к этому времени, то смена буферов выполняется в ходе начавшегося нового цикла, вызывая разрыв.
Adaptive V-Sync от NVIDIA
⇡#G-Sync: как это работает
Резюмируем: лучший компромисс между проблемами разрывов и «фризов» дает простое увеличение частоты обновления экрана до 120 или 144 Гц. Для 60-герцевых мониторов требуются более изощренные технологии — тройная буферизация и Adaptive V-Sync, лучше — одновременно (если последняя это допускает). Убрать «фризы» полностью можно только путем вмешательства в аппаратные средства на стороне монитора, которое устранило бы сам источник сложностей — необходимость синхронизировать переменную частоту смены кадров с фиксированной частотой обновления экрана. LCD-мониторы, в отличие от электронно-лучевых трубок, дают такую возможность. Люминофор на CRT-экране угасает настолько быстро, что в отдельный момент времени светится только участок изображения. Как следствие, обновление уже на 60 Гц вызывает заметное невооруженным глазом мерцание, не говоря о меньших частотах. Пиксели LCD-матрицы, напротив, светятся непрерывно. Стало быть, время между циклами обновления можно варьировать, подстраивая его под время смены кадровых буферов. Проще говоря, экран можно обновлять сразу после того, как финализируется очередной кадр. Таким образом, проблемы разрывов, «фризов», а также задержки ввода при активном V-Sync устраняются в корне, как если бы частота обновления экрана была бесконечно высокой. Именно таким образом работает G-Sync.
Протоколы DisplayPort, DVI и HDMI в текущих версиях не допускают манипуляций временем обновления, поэтому G-Sync представляет собой проприетарное решение, которое требует замены контроллера дисплея фирменной платой. Время между циклами обновления варьируется за счет интервала VBLANK, который изначально применялся в ЭЛТ-мониторах для того, чтобы выключить и позиционировать луч в начало изображения после отрисовки кадра. К счастью для нас, хотя VBLANK является рудиментарным для LCD-панелей, он поддерживается микросхемами TCON (Timing Controller) в современных мониторах, что позволяет не трогать этот компонент, адаптируя монитор под G-Sync. В текущей реализации G-Sync допускается увеличение VBLANK вплоть до 33,3 мс (30 Гц). Нижний предел ограничен только минимальным интервалом между обновлениями, который для лучших матриц с частотой обновления 144 Гц составляет около 7 мс.
ASUS SWIFT PG278Q — первый монитор, обладающий модулем G-Sync в штатной поставке. Ранее для того, чтобы приобщиться к этой технологии, требовалось купить модуль отдельно и установить его в единственную совместимую модель — ASUS VG248QE (либо купить монитор у немногих поставщиков, которые делали это сами). Но, по-видимому, в этих моделях используется одна и та же плата G-Sync. Модуль, извлеченный нами из ASUS PG278Q, построен на базе FPGA-чипа Altera Arria V GX, обладающего интегрированным интерфейсом LVDS для сообщения с чипом TCON монитора. Интересно, что NVIDIA использовала здесь FPGA, а не ASIC (то есть выбрала программируемую микросхему вместо чипа, выполняющего специфические функции), но это вполне понятно, если принять во внимание мелкие (по крайней мере пока) масштабы производства. Видимо, из-за этого также пришлось пожертвовать аппаратным масштабированием изображения из «неродных» разрешений. Эта задача, впрочем, без проблем выполняется на стороне GPU. В текущей реализации G-Sync также лишен возможности принимать звук по интерфейсу DisplayPort.
Помимо чипа Altera, на плате обнаруживаются три микросхемы SK hynix H5TC2G63FFR типа DDR3L объемом по 256 Мбайт. Такая конфигурация отчасти продиктована требованиями не к объему, а к совокупной пропускной способности памяти. Поскольку модуль обладает интерфейсом DisplayPort 1.2, поддерживаются разрешения вплоть до UHD (3840×2160) при частоте 60 Гц.
С G-Sync, разумеется, совместимы только видеокарты на GPU NVIDIA. Поддерживаются модели с графическим процессором архитектуры Kepler — не менее мощным, чем GK104 (то есть GeForce GTX 650 Ti BOOST и выше), или Maxwell, среди которых пока представлены только GTX 750 и GTX 750 Ti.
⇡#Adaptive Sync — альтернатива G-Sync
Между тем оказалось, что произвольное время обновления не является чем-то абсолютно новым для индустрии и уже давно присутствует в стандарте eDP — DisplayPort, адаптированном для соединения GPU с интегрированными панелями в мобильных устройствах. Многие ноутбуки обладают всем необходимым для работы этой функции на аппаратном уровне. Не хватает только поддержки со стороны драйверов, что, кстати, удивительно во времена кампании по снижению энергопотребления всех компонентов ПК, которую развернула Intel с выпуском процессоров архитектуры Haswell. Обновление экрана, как известно, расходует энергию, и снижение частоты потенциально должно положительно отразиться на времени автономной работы.
Стараниями AMD такая функциональность под названием Adaptive Sync (не путать с Adaptive V-Sync от NVIDIA) была включена как опция в свежие спецификации DisplayPort версии 1.2a. Интересно, что Adaptive Sync позволяет манипулировать частотой обновления в более широких пределах, начиная с 9 Гц, в то время как нижний предел для G-Sync составляет 30 Гц.
Демонстрация AMD FreeSync на Computex-2014
AMD будет продвигать ее под именем FreeSync для APU и GPU с архитектурой GCN 1.1. Поскольку Adaptive Sync входит в общий стандарт, требуется только поддержка со стороны производителей ASIC контроллеров дисплея. Заявлено, что готовые мониторы появятся на рынке самое ранее уже в этом году. NVIDIA пока не подтвердила, что будет поддерживать Adaptive Sync на своем оборудовании, и вообще воздерживается от пространных комментариев на этот счет. В конце концов, ситуация симметрична той, что сложилась с API Mantle. Одна сторона представляет проприетарное решение, другая вскоре выступает с поддержкой общедоступного стандарта, который решает те же задачи. Но если реалистично смотреть на сроки, то в этом году G-Sync останется единственной доступной технологией в своем роде.
⇡#ULMB (Ultra-Low Motion Blur)
В мониторах с модулем G-Sync представлена еще одна функция, не связанная с его основным назначением. При активации ULMB подсветка матрицы мерцает синхронно с обновлением кадров так, что большую часть времени предъявления на экране кадр затемнен и становится виден лишь в течение краткого импульса. Точно такую технологию мы обнаружили в мониторе EIZO Foris FG2421 и не можем описать ее назначение лучше, чем процитировав тот обзор.
Необходимость в такой странной — на первый взгляд — технологии связана со следующим фундаментальным недостатком LCD-дисплеев (по сравнению с ЭЛТ). Даже при бесконечно малом времени отклика движущиеся объекты на жидкокристаллическом экране выглядят размытыми для человеческого глаза. Причина этого явления в том, что движение на экране представлено как последовательность статических положений объекта, каждое из которых непрерывно занимает определенное время — 1/60 или 1/120 секунды (sample-and-hold-экран). В то же время направление взора, следящего за объектом, перемещается непрерывно, предвосхищая его следующее положение, как если бы перед человеком была реальная вещь. Как следствие, пока изображение остаётся неизменным в течение 1/60 или 1/120 с, глаз успевает сместиться — и размытый шлейф возникает уже не на экране, а на самой сетчатке глаза. Убедиться в этом явлении воочию позволит простой браузерный тест.
ЭЛТ-мониторы лишены такого недостатка. Поскольку изображение формируется построчно сканирующим лучом, и люминофор отдельных пикселов быстро угасает, отдельно взятый участок экрана предъявляется наблюдателю на краткое время. Движение объекта представлено отдельными, разнесёнными во времени импульсами, между которыми изображение залито чёрным. Перемещаясь по чёрному полю вслед за воспринимаемой линией движения, взгляд не вызывает размытия ретинального образа.
Иллюстрация из обзора EIZO Foris FG2421 применима к ULMB с поправкой на то, что в ASUS ROG SWIFT PG278Q подсветка не мерцает на частоте 120 Гц
Благодаря мерцанию подсветки синхронно с обновлением экрана предъявляемые кадры превращаются в отделённые моментами черноты импульсы — аналогично ЭЛТ, в конечном счете избавляя зрителя от размытия движущихся объектов. С функцией G-Sync в текущем варианте ULMB не совместим.
⇡#ASUS ROG SWIFT PG278Q: технические характеристики, цена
В мониторе установлена матрица M270Q002 производства AU Optronics, принадлежащая к классу TN+Film. Ее главные достоинства включают разрешение 2560х1440, высокую яркость (до 350 кд/м 2 ) и контрастность (1000:1). Время отклика GtG составляет 1 мс, а частота обновления экрана достигает 144 Гц. Между прочим, за поддержку 144 Гц при разрешении WQHD также стоит поблагодарить модуль G-Sync, который принимает такой поток данных через DisplayPort в режиме SST (Single-Stream Transport). Для этого фактически требуется даже чуть большая пропускная способность, чем для 4K-видео при частоте 60 Гц. ASIC контроллеров экрана в 4К-мониторах не столь давно достигли такой производительности, а до этого момента экраны сверхвысокого разрешения подключались в режиме MST и предъявлялись системе как два отдельных устройства. Можно ли было использовать MST для подъема частоты WQHD-экрана с 60 до 144 Гц — большой вопрос.
Заявленные углы обзора типичны для матрицы TN+Film: 170 градусов по горизонтали 160 по вертикали, но не будем забывать, что мера оценки углов обзора на основании падения контрастности до 10:1 сама по себе чересчур либеральна, к тому же не учитывает искажения цветопередачи.
Монитор способен отображать до 16,7 млн цветов путем «честного» 8-битного кодирования, что нетипично для TN-матриц, большинство которых пользуются 6-битным кодированием, дополненным технологией FRC. Эта особенность говорит о том, что панель принадлежит к высшей категории среди TN+Film, и позволяет надеяться на неплохое качество изображения, поэтому сразу отворачиваться от «ещё одной тиэнки» не стоит. Забегая вперёд, скажем, что качество у неё действительно не подкачало.
В России монитор должен появиться в сентябре, а стоить будет 30—32 тысячи рублей. Для компьютерного монитора цена довольно высока, а на момент написания этой статьи за подобную сумму можно купить даже 4К-монитор или дисплей с очень хорошей IPS-матрицей, вот только поддержки G-Sync у таких моделей не будет. О том, так ли уж нужна геймеру эта технология, мы поговорим в разделе с результатами тестирования, а пока рассмотрим поближе сам монитор и его комплект поставки.
ASUS ROG SWIFT PG278Q | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Экран | ||||||||||||||||||
Диагональ, дюймы | 27 | |||||||||||||||||
Соотношение сторон | 16:9 | |||||||||||||||||
Покрытие матрицы | Матовое | |||||||||||||||||
Стандартное разрешение, пикс. | 2560×1440 | |||||||||||||||||
PPI | 108,79 | |||||||||||||||||
Параметры изображения | ||||||||||||||||||
Тип матрицы | TN | |||||||||||||||||
Заявленный цветовой охват | 72% NTSC | |||||||||||||||||
Тип подсветки | WLED | |||||||||||||||||
Макс. яркость, кд/м 2 | 350 | |||||||||||||||||
Контрастность статическая | 1 000:1 | |||||||||||||||||
Контрастность динамическая | 100 000 000 000 : 1 | |||||||||||||||||
Количество отображаемых цветов | 16,7 млн | |||||||||||||||||
Частота горизонтальной развёртки, кГц | 89—222 | |||||||||||||||||
Частота вертикальной развёртки, Гц | 50—144 | |||||||||||||||||
Время отклика BtW, мс | НД | |||||||||||||||||
Время отклика GtG, мс | 1 мс | |||||||||||||||||
Максимальные углы обзора по горизонтали/вертикали, ° | 170/160 | |||||||||||||||||
Разъемы | ||||||||||||||||||
Видеовходы | 1 x DisplayPort v 1.2; | |||||||||||||||||
Видеовыходы | Нет | |||||||||||||||||
Дополнительные порты | 2 x USB 2.0 Type A; 1 x USB 2.0 Type B; | |||||||||||||||||
Встроенные колонки: число х мощность, Вт | Нет | |||||||||||||||||
Физические параметры | ||||||||||||||||||
Регулировка положения экрана | Угол наклона, регулировка по высоте | |||||||||||||||||
VESA-крепление: размеры (мм) | 100х100 | |||||||||||||||||
Крепление для замка Kensington | Да | |||||||||||||||||
Блок питания | Внешний | |||||||||||||||||
Макс. потребляемая мощность: в работе / в режиме ожидания, Вт |
Конфигурация тестового стенда | |
---|---|
CPU | Intel Core i7-3770K @ 3,9 ГГц (100×39) |
Видеокарта | Nvidia GeForce GTX TITAN Black |
Материнская плата | Intel DZ77GA-70K |
Оперативная память | DDR3 AMD Radeon R9 2×8 Гбайт @ 1866 МГц |
ПЗУ | Intel SSD 520 240 Гбайт |
Блок питания | Corsair AX1200i, 1200 Вт |
Охлаждение CPU | Thermalright Archon |
Операционная система | Windows 8 X64 |
Испытания проводились в играх Assasin’s Creed: Black Flag, а также в Counter-Strike: Global Offensive. Новую технологию мы тестировали двумя способами: просто играли, а затем устроили охоту на разрывы с помощью скрипта, который плавно перемещал игровую камеру, то есть «двигал мышкой» по горизонтали. Первый способ позволял оценить ощущения от G-Sync «в бою», а второй — более наглядно увидеть разницу между включенной/выключенной вертикальной синхронизацией и G-Sync.
G-Sync в Assasin’s Creed: Black Flag, 60 Гц
После выставления настроек, рекомендованных NVIDIA, частота смены кадров держалась на уровне 35—65 FPS, что отлично подходило для тестов.
Настройки графики, рекомендованные NVIDIA для тестирования G-Sync в Assasin’s Creed: Black Flag
Без V-Sync и G-Sync при частоте 60 Гц разрывы были отлично заметны почти при любом движении камеры.
Разрыв заметен в правой верхней части кадра, около мачты корабля
При включении V-Sync разрывы изображения пропали, но появились «фризы», что не пошло на пользу геймплею.
Двоящаяся мачта корабля на фото — один из признаков «фриза»
После включения G-Sync разрывы и «фризы» пропали полностью, игра стала работать плавнее. Конечно, периодическое уменьшение частоты кадров до 35—40 FPS было заметно, но благодаря синхронизации дисплея и видеокарты не вызывало столь ощутимых тормозов, как с вертикальной синхронизацией.
Однако, как говорится, лучше один раз увидеть, чем сто раз услышать, поэтому мы сделали короткое видео, на котором показана работа новых «Ассасинов» с включённой и выключенной вертикальной синхронизацией, а также с G-Sync. Конечно, видео не может передать «живые» впечатления полностью хотя бы из-за съёмки на частоте 30 кадров в секунду. Кроме того, камера «видит» мир иначе, чем глаз человека, поэтому на видео могут быть заметны артефакты, которые в реальном мире не разглядеть, — например, двоение изображения. Тем не менее мы постарались сделать это видео максимально наглядным: по крайней мере наличие или отсутствие разрывов на нём вполне заметно.
Теперь запустим Assasin’s Creed: Black Flag с минимальными настройками и посмотрим, что изменилось. Количество кадров в секунду в таком режиме игры не превышало 60 FPS — выставленной частоты обновления экрана. Без включённой вертикальной синхронизации на экране были заметны разрывы. Но стоило включить V-Sync, как разрывы пропали и «картинка» стала выглядеть практически так же, как и при G-Sync.
При выставлении максимальных настроек графики количество кадров в секунду стало колебаться около 25—35 FPS. Разумеется, сразу же вернулись разрывы без V-Sync и «фризы» с ним. Исправить эту ситуацию не смогло даже включение G-Sync — при таком низком количестве FPS тормоза порождает уже сам GPU.
G-Sync в Assasin’s Creed: Black Flag, 144 Гц
При отключенных V-Sync и G-sync на экране можно было найти разрывы, но благодаря частоте обновления 144 Гц их стало гораздо меньше, чем раньше. При включении V-Sync пропадали разрывы, но чаще стали встречаться «фризы» — почти как и при частоте обновления экрана в 60 Гц.
Включение G-Sync, как и раньше, смогло исправить ситуацию, но самое сильное улучшение картинки было заметно лишь при высокой частоте кадров — от 60 FPS и выше. Вот только без снижения настроек или добавления второй видеокарты уровня GeForce GTX Titan Black достичь такой высокой частоты кадров не получалось.
G-Sync в Counter-Strike: Global Offensive, 60 и 144 Гц
В сетевых играх на игровой процесс и качество изображения влияют не только видеокарта и монитор, но и пинг — чем он выше, тем больше задержка «отклика» игры. Во время наших тестов пинг находился на уровне 25—50 мс, а частота кадров во время теста колебалась около 200 FPS.
Настройки изображения, использованные в Counter-Strike: Global Offensive
Без использования G-Sync и V-Sync в CS, как и в Assasin’s Creed, наблюдались разрывы. При включении V-Sync при частоте 60 Гц играть стало сложнее — частота кадров упала до 60 FPS, да и бегать игровой персонаж стал неровно из-за большого количества «фризов».
При включении G-Sync фреймрейт так и остался на уровне 60 кадров в секунду, но «фризов» стало гораздо меньше. Нельзя сказать, что они пропали совсем, но портить впечатление от игры перестали.
Теперь увеличим частоту обновления экрана и посмотрим, что изменится. При отключенных G-Sync и V-Sync на 144 Гц разрывов стало гораздо меньше, чем при 60 Гц, но полностью они не исчезли. Зато при включении V-Sync пропали все разрывы, а «фризы» стали практически незаметными: играть в таком режиме очень комфортно, да и скорость передвижения не снижается. Включение G-Sync и вовсе превратило изображение в конфетку: геймплей стал настолько плавным, что даже 25-мс пинг стал сильно влиять на игровой процесс.
Тестирование режима ULMB
Ultra Low Motion Blur включается из меню монитора, но предварительно требуется отключить G-Sync и выставить частоту обновления экрана на отметке 85, 100 или 120 Гц. Более низкие или высокие частоты не поддерживаются.
Практическое применение этой «фишки» очевидно: текст на сайтах меньше смазывается во время прокрутки, а в стратегиях и прочих RTS-играх движущиеся юниты выглядят более детально.
ASUS ROG SWIFT PG278Q в 3D
ASUS ROG SWIFT PG278Q — первый в мире монитор, способный воспроизводить стереоскопическую картинку при разрешении 2560х1440 благодаря интерфейсу DisplayPort 1.2. Тоже, в принципе, немаленькое достижение. К сожалению, у монитора нет встроенного ИК-трансмиттера, поэтому мы взяли трансмиттер из комплекта NVIDIA 3D Vision, а очки — из комплекта 3D Vision 2. Такая связка заработала без проблем, и мы смогли протестировать стереоскопическое 3D как следует.
Никакого эффекта ghosting и прочих артефактов, встречающихся у псевдообъёмного видео, мы не нашли. Разумеется, иногда в играх некоторые объекты находились на неправильной глубине, но к недостаткам монитора это отнести никак нельзя. На ASUS PG278Q можно как смотреть стереофильмы, так и играть в подобные игры. Главное — чтобы видеоадаптер потянул.
⇡#Выводы
Нисколько не желая приуменьшить достижения NVIDIA, нужно заметить, что в целом G-Sync — это такое новшество, которое сводится к избавлению от давнего и вредоносного атавизма — регулярного обновления LCD-панелей, которые в нём изначально не нуждаются. Оказалось, что для этого достаточно внести небольшие изменения в протокол DisplayPort, которые по щелчку пальцев попали в спецификацию 1.2a и, если верить обещаниям AMD, уже очень скоро найдут применение в контроллерах дисплея от многих производителей.
Пока, однако, доступна только проприетарная версия этого решения в виде G-Sync, которую мы имели удовольствие протестировать в мониторе ASUS ROG SWIFT PG278Q. Ирония в том, что это как раз такой монитор, для которого преимущества от G-Sync не очень-то заметны. Обновление экрана на частоте 144 Гц само по себе сокращает количество пресловутых разрывов настолько, что многие будут готовы закрыть глаза на эту проблему. А при вертикальной синхронизации мы имеем менее выраженные «фризы» и задержку ввода по сравнению с 60-Гц экранами. G-Sync в такой ситуации может только довести плавность игры до идеала.
И все же синхронизация обновления экрана с рендерингом кадров на GPU по-прежнему является более изящным и экономным решением, чем постоянное обновление на сверхвысокой частоте. Также не будем забывать, что применение G-Sync не ограничивается матрицами с частотой 120/144 Гц. В первую очередь приходят на ум 4К-мониторы, которые пока ограничены частотой 60 Гц как по спецификациям матриц, так и по пропускной способности видеовходов. Затем — мониторы на IPS, также не имеющие возможности перейти на 120/144 Гц в силу ограничений самой технологии.
При частоте обновления 60 Гц эффект G-Sync невозможно преувеличить. Если частота смены кадров постоянно превышает 60 FPS, то простая вертикальная синхронизация избавляет изображение от разрывов столь же успешно, но только G-Sync может сохранить плавную подачу кадров при падении фреймрейта ниже частоты обновления. Кроме того, благодаря G-Sync диапазон производительности 30-60 FPS становится намного более играбельным, что либо снижает требования к производительности GPU, либо позволяет выставить более агрессивные настройки качества. И снова мысль возвращается к 4К-мониторам, для игры на которых с хорошей графикой необходимо крайне мощное железо.
Также похвально, что NVIDIA применила технологию пульсирующей подсветки для удаления размытия движущихся объектов (ULMB), с которой мы ранее познакомились на примере EIZO Foris FG2421. Жалко, что пока она не может работать одновременно с G-Sync.
Сам монитор ASUS ROG SWIFT PG278Q хорош в первую очередь сочетанием разрешения 2560×1440 и частоты обновления 144 Гц. Ранее устройств с такими параметрами на рынке не было, а между тем игровым мониторам со столь низким временем отклика и поддержкой стереоскопического 3D давно пора вырасти из формата Full HD. К тому, что в PG278Q установлена TN-матрица, сильно придираться не стоит, ибо это действительно хороший экземпляр с высочайшей яркостью, контрастностью и отличной цветопередачей, которому после калибровки позавидуют и дисплеи на IPS. Технологию выдают разве что ограниченные углы обзора. Не оставим без похвалы и дизайн, подобающий такому качественному продукту. ASUS ROG SWIFT PG278Q получает заслуженную награду «Выбор редакции» — настолько он оказался хорош.
Рекомендовать этот игровой монитор к покупке без лишних раздумий мешает только цена в районе 30 тысяч рублей. Кроме того, на момент написания этой статьи ASUS ROG SWIFT PG278Q всё ещё не продаётся в РФ, поэтому увидеть его, а также и G-Sync, своими глазами негде. Но мы надеемся, что компании ASUS и NVIDIA в будущем решат эту проблему — например, показывая G-Sync на выставках компьютерных игр. Ну и цена, однажды, наверное, снизится.