Сварочный аппарат для оптоволокна что это такое

Устройство и принцип действия сварочных аппаратов для оптоволокна

Волоконно-оптические системы обладают повышенной способностью передачи сигнала. Функционирование линий зависит от точности соединения кабеля: чем выше качество взаимосвязи волосков, тем меньше потери пропускных способностей.

Сварочный аппарат для оптоволокна не требует большого опыта, но при работе следует учитывать несколько важных аспектов.

Технология: способы соединения

Сцепление световодов реализуется несколькими методами. Наиболее эффективным является сварка, специа льное оборудование позволяет достичь высокого качества с минимальным расходом энергии.

Сварка оптоволоконных линий – это метод соединения волокон посредством высокотемпературного воздействия. Для этого задействуется оборудование для быстрой сварки оптоволокна. Принцип работы предельно прост: кончики волокон расплавляют и соединяют. Основная проблема – точное расположение краев соединяемых элементов.

Некоторые устройства оборудованы функцией самостоятельного центрирования, в более простых моделях процесс возлагается на оператора.

Аппараты для световодов

Сварочное оборудование для соединения световодов активно производится мировыми компаниями. Среди большого количества моделей сложно выбрать наиболее приемлемый вариант. Устройства классифицируют по таким аспектам:

  • Вид юстировки.
  • Режим выполнения операций.
  • Разновидность контролирующей системы.
  • Количество световодов для одновременной сварки.

Современные модели способны самостоятельно программировать каждый этап сварки, но качество не всегда сохраняется на высоком уровне..

Конструктивные особенности и принцип действия

Сварка оптоволокна проходит в автоматическом режиме, мастер только заправляет концы кабеля в разъемы. Сцепление проводов проводится в условиях сильного термического воздействия, в качестве источника выступает электрическая дуга. Аппарат для сварки оптоволокна является сложным конструктивным изделием, он включает следующие составные элементы:

  • преобразователь постоянного тока;
  • материнская плата;
  • блок питания;
  • центровочный узел механического типа, оснащенные сервомоторами для передвижения в горизонтальной и вертикальной плоскостях, благодаря чему достигается высокая точность соединения;
  • нагревательный элемент, расплавляющий термоусадочный материал и изоляционную муфту;
  • экран, на котором отображаются параметры сварки и транслируется рабочая зона.

Основные критерии для выбора

Надежное шовное соединение возможно получить только при точном контакте концов кабеля, поэтому рекомендуется акцентировать внимание при покупке на модели с функцией центрирования волокна. Аппарат для пайки оптоволокна выбирается по таким критериям:

  • метод выравнивание проводов;
  • разновидности свариваемого волокна (хорошо себя зарекомендовали универсальные разновидности);
  • скорость сварки (этот показатель рассчитывается количеством спаек за установленную единицу времени);
  • дополнительная комплектация.

[stextbox многофункциональные устройства не всегда оправдывают стоимость. Модели китайского происхождения дешевле аналогов из Японии, но качеством и производительностью они практически не отличаются.[/stextbox]

Обзор лучших моделей

Качество соединения оптоволоконных изделий зависит от производительности и функциональности оборудования. Важным аспектом при выборе установки является надежность производителя. Лидирующие позиции по количеству положительных отзывов сохраняет бренд Fujikura из Японии, товары компания соответствуют международным стандартам качества, отличаются удобством и простотой использования. К другим производителям с подобными показателями относятся:

В России длительное время изготовлением подобной продукции никто не занимался, в СССР активно использовался агрегат «Сова», но к настоящему моменту он не может составить конкуренцию современному оборудованию.

[stextbox компании «Макстелеком» Братский А. Н.:«Бренд «Макстелеком» изготовил AFS-10 – это аналогичное устройство от популярной зарубежной компании. По техническим характеристикам и функциям он не отличается от дорогостоящего устройства. Российский аппарат позволяет проводить быструю и качественную сварку, но обладает умеренной ценой».[/stextbox]

По отзывам пользователей, опытных специалистов, работников мировых предприятий удалось определить несколько моделей, которые выделяются своей технической начинкой и надежностью среди всех прочих. К ним относятся:

  • Fujikura 80S. Работает в автоматическом режиме, обладает встроенной инструкцией и меню на русском языке. Выравнивание проводов происходит по сердцевине, мощность электродуги определяется самостоятельно. Стоимость начинается от 400 000 рублей.
  • Jilong KL-280G. Отличается минимальным потреблением электроэнергии и высокой скоростью соединения (в среднем на одну операцию уходит 9 секунд). Программа сварки выбирается автоматически, затем система проверяет надежность стыка. Жидкокристаллический экран на 5,5 дюймов позволяет выполнить необходимый перечень настроек и отображает рабочую зону. Цена около 350 000 рублей.
  • Furukawa S177 A. Аппарат для быстрой сварки оптических волокон легкий и малогабаритный, выравнивает волокно по середине. Оснащен встроенной батареей для автономного использования. Подключается к любой сети и реализует соединение повышенной точности. Приобрести изделие можно за 700 000 рублей.

Грамотная эксплуатация оборудования

Даже если сварка осуществляется в автоматическом режиме, оператор должен постоянно контролировать процесс. От этого зависит надежность и прочность соединения элементов. Правильное соединение волокон состоит из следующих этапов:

  1. Разделка провода.
  2. Очистка.
  3. Размещение световода в защитной гильзе.
  4. Перпендикулярное скалывание.
  5. Зажим концов кабеля в устройстве.
  6. Совмещение краев под микроскопом.

Каждый этап требует не только теоретических знаний, но и определенного опыта. Специалисты рекомендуют не проводить сварку мастерам без опыта. В этом случае лучше обратиться в специализированное учреждение.

Последовательность операций в рабочем цикле

Прибор для качественной пайки оптоволокна необходимо выбирать, исходя из особенностей материала, навыков оператора и необходимой точности соединения. Сращивание оптического волокна проводится по установленному алгоритму действий:

  1. Установка термоусадочной гильзы на один из краев световодов.
  2. Подготовка соединяемых участков к термическому воздействию.
  3. Размещение волокон в направляющий аппарат.
  4. Юстировка в горизонтальной и вертикальной плоскостях.
  5. Сварка световодов.
  6. Анализ качества сварного шва.
  7. Защита места воздействия термоусаживающей гильзой.
  8. Проведение тестов соединения.
Читайте также:  Впн расширение для яндекс браузера установить

Основные этапы эволюционирования приборов

Первые приборы для обработки оптоволокна работали исключительно в ручном режиме, постепенно разработчики внедрили специальное программное обеспечение, которое сводит привлечение ручного труда к минимуму.

По степени автоматизации устройства различаются на несколько разновидностей:

  1. Ручная. Для использования такого оборудования оператор должен обладать высоким уровнем знаний и навыков, поскольку волокна стыкуются вручную, точность обеспечивается за счет микроскопа.
  2. Полуавтоматическая. Соединение концов волокон происходит автоматически, но способ контроля не изменяется.
  3. Автоматическая. Стыковка, юстировка и сварка реализуется автоматически. Контроль процесса проводится через монитор, куда отправляется изображение с камеры, расположенной в рабочей зоне.

Работа оператора с аппаратами автоматической сварки заключается в очистке волокна и выполнении подготовительных мероприятий перед сваркой.

Дополнительное оборудование, используемое при проведении работ с ВОЛС

Работа с оптоволокном – это тонкий и точный процесс, при котором необходимо использовать вспомогательные инструменты и оборудование. Разрезать световод простыми кусачками нельзя, понадобится целый арсенал приспособлений. Поэтому лучше приобрести готовый набор инструментов – «НИМ-25». Он включает кусачки, стрипперы, отвертки, плоскогубцы, ножи, торцевые кусачки и многое другое.

Дополнительно для защиты сварного шва понадобятся защитные гильзы, которые представляют собой изделий из термоусадочного материала. После соединения волокна помещаются в кассету, спецмуфту либо спайс-пластину. Не обойтись без термострипперов и скалывателей, которые ответственные производители предоставляют в комплекте со сварочными агрегатами, но иногда их нужно приобретать отдельно. Для закрепления термоусадки понадобится печь и спиртовая помпа.

Сварочный аппарат для соединения оптикивостребованное устройство, которое используется крупными предприятиями и частными организациями в промышленном либо штучном масштабе. Изделия отличаются техническими характеристиками, режимами функционирования, комплектацией и стоимостью, но принцип работы у них один. Правильное использование устройства позволяет получить качественный и надежный шов при небольших расходах.

Источник

Для чего нужны сварочные аппараты оптоволокна?

Сварка оптического волокна подразумевает под собой процесс соединения жил оптического кабеля (оптических волокон) при помощи воздействия высокой температуры (термическая обработка). Сегодня сварку такого типа могут выполнить в автоматическом режиме сварочные аппараты оптоволокна.

Что они собой представляют?

Сварка оптических волокон осуществляется с применением сварочных аппаратов, с помощью которых проводится весь комплекс соответствующих работ: от совмещения концов до полной защиты соединения.

Интересно отметить, что выпущенные в последние годы сварочные аппараты многие специалисты считаются самыми настоящими промышленными роботами. Они снабжаются автоматической системой, которая полностью руководит процессом сварки. Конечно, работа на таких аппаратах, несмотря на всю автономность устройств, проходит под контролем оператора (человека).

Приблизительные размеры стандартного сварочного аппарата – 15х15х15 см (в расчет не принимаются выступающие части). Обычно он может без особых проблем поместиться в стандартный напольный шкаф 19 (конечно, если по ширине устройство не превышает 19 дюймов).

Стандартный сварочный аппарат включает в себя следующие блоки и узлы:

  • Электронный блок, в который входят: блок дуги, преобразователь напряжения, материнская плата и т.п.;
  • Блок питания;
  • Механическая часть, в которую входят: каретки, электроприводы, оптическая система, V-канавки, печь для термоусадки и т.п.;
  • Монитор, необходимый для видеоконтроля за процессом выполнения работы.

В зависимости от разновидности сварочный аппарат может включать в себя множество тех или иных элементов, необходимых для комфортной работы пользователя.

Разновидности сварочных аппаратов

У всех аппаратов обязательно есть свое программное обеспечение, которое для каждой модели уникально. Кроме того, предусмотрено наличие интерфейса пользователя, состоящего из монитора, меню и клавиатуры. В меню есть два раздела – открытый и секретный (для пользователей и сервиса соответственно).

В большинстве случаев, секретный раздел защищается паролем или специальной комбинацией клавиш. Он необходим для гибкой настройки работы сварочного аппарата (например, чтобы сварить тот или иной волоконно оптический кабель).

Все современные аппараты можно разделить на три больших группы:

  • Аппараты, имеющие выравнивание по сердцевине;
  • Аппараты с фиксированными V-канавками;
  • Аппараты для оптического ленточного волокна.

Разные аппараты, конечно, будут иметь разную стоимость.

Стоимость сварочных аппаратов

Стоимость устройств такого типа будет зависеть от множества разных факторов, основными из которых являются:

  • Компания-производитель (конечно, китайские аппараты будут стоить намного дешевле высококачественных японских или корейских);
  • Диапазон свариваемых волокон (некоторые аппараты работают со всеми волокнами, а некоторые – лишь с некоторыми);
  • Общее время сварки (в разных аппаратах сварка может занимать от нескольких секунд до пары минут);
  • Общее время термоусадки (в большинстве случаев, этот показатель во всех аппаратах равен 20-40 секундам).

Кроме того, на цену будет влиять наличие или отсутствие тех или иных функций. Например, некоторые современные устройства имеют USB-интерфейс.

Нужно принимать во внимание, что сварочные аппараты стоят сравнительно дорого, поэтому в покупке таких устройств заинтересованы, как правило, только фирмы и компании, оказывающие соответствующие услуги. Серверная стойка для размещения подобных устройств не подойдет.

Источник

Сварка оптоволокна

Спросите у любого связиста — какой самый главный, самый ответственный и тонкий технологический процесс в строительстве волоконно-оптических линий связи? Можно не сомневаться, что ответ — сварка оптического волокна. Можно разработать грамотный проект, удачно выбрать оптический кабель и правильно проложить его, но именно от качества сварных соединений волокон этого кабеля зависит, будет ли соответствовать построенная ВОЛС заданным требованиям и заработает ли она вообще.

Читайте также:  Что делать если резко поднялся пинг

В настоящее время эта задача максимально упростилась, если сравнить её, например, с ситуацией двадцатилетней давности. Появилась новая аппаратура, позволяющая сваривать волокна в автоматическом режиме, делать это удивительно быстро и безошибочно. Разработаны новые марки оптических волокон, доведены до совершенства технологии их производства, повысилась точность изготовления — всё это устранило многие проблемы, возникающие при сварке. Вспомогательное оборудование, инструменты в настоящее время тоже стали точнее и даже «умнее». И, казалось бы, процесс упростился, можно взять сварочный аппарат, заглянуть в инструкцию — и профессия монтажника-спайщика освоена. Упростился настолько, что в последнее время в интернете очень часто можно встретить видеоролики снятые энтузиастами-любителями и рассказывающие, как научиться сваривать оптоволоконный кабель за 15 минут. Безусловно, энтузиазм — это хорошо, да и выглядят эти видео зрелищно, но к настоящей работе по сварке оптики это почти не имеет отношения.

Исправим эту ситуацию — подробно рассказываем что, чем, как и где нужно сваривать. И как НЕ надо сваривать тоже.

Сварка ВОЛС: типы волокон и особенности их сварки

В зависимости от своей архитектуры, от применяемой технологии передачи данных современные ВОЛС могут быть построены с применением различных типов ОВ. Самые распространённые из них:

  • cтандартное одномодовое ОВ (SM, rec.G.652);
  • изгибостойкое ОВ (BIF, rec.G.657);
  • ОВ с нулевой смещенной дисперсией (DSF, rec.G.653);
  • ОВ с ненулевой смещенной дисперсией (NZDSF, rec.G.655);
  • многомодовое ОВ (MM, rec.G.651.1).

Все эти типы имеют различные свойства, относящиеся к способности передавать оптический сигнал. Например, задача SM-волокна — обеспечить передачу сигнала с потерями, не превышающими 0.22 дБ/км, а NZDSF-волокна — передача с минимальной дисперсией вблизи длины волны 1550 нм. Но, с точки зрения пригодности этих волокон к сварке, эти свойства нас не интересуют. Определяющей характеристикой является их конструкция, а именно — различная конфигурация профиля показателя преломления (ППП) сердцевины. Не уточняя, какими могут быть эти различия, визуально сравним, как выглядит ППП SM-волокна (рис. 1, слева) и NZDSF-волокна (рис.1, справа).

Рис. 1. диаграмма ППП SMF (слева); диаграмма ППП NZDSF (справа)

Наглядно показано, что структура сердцевин имеет существенное различие. Обусловлено оно разным распределением легирующих добавок. Теперь представим, что надо сварить ОВ двух этих типов друг с другом. Что будет происходить в месте их сплавления, как будет выглядеть структура сердцевины? Думаем, на этот вопрос точно никто ответить не сможет. Но это и не нужно — задача заключается в прочном соединении оптических волокон и минимуме потерь на нём. Современные аппараты без проблем справляются с этой задачей, несмотря на то, что на экране сварочного аппарата такие разнородные соединения смотрятся, мягко говоря, подозрительно.

В качестве примера приведем результаты спайки волокон фирмы Corning® — SMF-28 Ultra и SMF-28 ULL. И хотя обе эти марки соответствуют стандарту G.652, они существенно отличаются по составу легирующих добавок и по форме ППП сердцевины. В первом из них ППП близок к ступенчатой форме, во втором эта форма носит более сложный характер, что обеспечивает рекордно низкие погонные потери ОВ (менее 0,17 дБ/км). На следующих иллюстрациях продемонстрированы три комбинации их сварных соединений между собой.

Рис. 2. Corning® SMF-28 Ultra + Corning® SMF-28 Ultra

Рис. 3. Corning® SMF-28 ULL + Corning® SMF-28 ULL

Рис. 4. Corning® SMF-28 Ultra + Corning® SMF-28 ULL

Можно заметить, что «простое» SMF-28 Ultra сварилось между собой лучше всех, сварной шов незаметен. В случае с SMF-28 ULL шов виден явным образом, а при сварке двух разных типов шов даже подчёркивает различие сердцевин.

Скажем сразу, что это нормально. При последующем измерении потерь на этом стыке с помощью OTDR можем убедиться, что потери во всех случаях находятся в пределах нормы. С результатами этих испытаний можете ознакомиться, посмотрев наше видео с процессом сварки оптоволокна Corning ULL:

  • Стоит также отметить, что волокно Corning® SMF-28 Ultra соответствует не только стандарту G.652, но и G.657. Это даёт возможность применять это ОВ как в случае необходимости применения первого стандарта, так и при необходимости соответствия второму. Т. е. на тех участках ВОЛС, где проектом предусмотрено соединение двух разных типов ОВ, фактически, соединяем два одинаковых и достигаем минимума потерь. Именно эта марка ОВ используется как основная в кабелях завода «Инкаб».

    Оборудование для сварки оптических волокон

    Что же представляет из себя процесс сварки ОВ? Спайка оптического волокна — процесс соединения двух волокон при помощи высокотемпературного воздействия. Такое воздействие производится в сварочных аппаратах при использовании дугового разряда (вольтовой дуги). Принцип формирования этой дуги идентичен во всех сварочных аппаратах и в целом не является технически сложной задачей. Температура дуги может достигать 4800°С, тогда как температура плавления кварцевого стекла 1665°С, что позволяет без труда расплавить и соединить два волокна. Основную сложность в получении высококачественных соединений ОВ представляет собой задача выравнивания сращиваемых волокон. Выравнивание необходимо осуществить таким образом, чтобы совпали именно сердцевины ОВ, так как только в этом случае не будет помех для прохождения сигнала. Выравнивание, а точнее сказать, юстировка — самая главная характеристика и главное отличие разных моделей сварочных аппаратов.

    Читайте также:  Check point endpoint security vpn gui что это

    В настоящее время актуальными являются четыре типа систем юстировки:

    • юстировка по активной V-образной канавке (Active V-groove);
    • юстировка по ППП (PAS, Profile Alignment System);
    • юстировка по тепловой люминесценции (CDS, Core Detection System);
    • юстировка по анализу проходящего света (LID, Light Injection and Detection).

    Юстировка по активной канавке заключается в анализе сварочным аппаратом изображения сращиваемых волокон. Волокна после укладки в зажимах сдвигаются в область будущего стыка, где их положение регистрируется встроенной видеокамерой. Изображение и положение зажимов анализируется микропроцессором, который таким образом пытается «рассмотреть» сердцевины волокон. Когда местоположение сердцевин максимально точно определено, приводы зажимов перемещают волокна в точку их наилучшего совпадения.

    Развитием этого метода стало появление PAS — системы юстировки, получившей более сложную конструкцию механизма сведения, видеокамеру с управляемым переменным фокусным расстоянием и очень сложные алгоритмы анализа получаемых изображений. Все эти усовершенствования несколько улучшают точность юстировки волокон и существенно удорожают сварочный аппарат в целом. Аппараты с PAS ещё называют «магистральными», подчёркивая таким образом их превосходство по качеству результата над аппаратами с Active V-groove, которые обычно называют «городскими».

    Аппараты, работающие с юстировкой по тепловой люминесценции (CDS) отличаются тем, что анализируют изображение, получаемое не проходящим светом, а излучением самого волокна, которое разогревается отдельной, предварительной дугой. Этот метод позволяет получить ещё чуть более точную информацию о координатах сердцевины. Но, в свою очередь, дополнительный нагрев даёт некоторое уменьшение прочностных характеристик ОВ.

    Последний метод, LID, является самым точным и самым сложным. В его основе используется принцип введения и регистрации излучения на изогнутом волокне. ОВ закрепляются в специальных прижимах, формирующих их изгиб. В непосредственной близости от первого прижима в волокно вводится тестовое излучение, которое проходит по волокну и переходит во второе волокно, на изгибе которого, рядом с прижимом установлен фотодетектор, улавливающий это излучение. Процессор управляет перемещением прижимов относительно друг друга и отслеживает момент, когда мощность переданного излучения максимальна. В этот момент истины и достигается максимальное соответствие сердцевин.

    Надо сказать, что на российском рынке представлены только аппараты первых двух типов. Аппараты с CDS и LID дороги, сложны и не имеют сервисной поддержки у нас в стране.

    Помимо этой системы, безусловно, различные модели сварочных аппаратов имеют множество других отличий и характеристик. Некоторые могут иметь сенсорный экран, другие могут похвастаться компактным исполнением, третьи — ударопрочным корпусом. Выбор модели аппарата для приобретения можно делать, разумеется, ориентируясь на цену, но при этом надо помнить, что за разницей в цене может стоять существенное отличие в комплектации или, например, условия послегарантийного обслуживания.

    Практика показывает, что в настоящее время качество результатов по сварке у всех аппаратов приблизительно выравнивается.

    Для облегчения выбора в пользу той или иной марки и модели можем привести сравнительную таблицу (Табл.1), где перечислены некоторые популярные (и не очень) модели и их основные характеристики.

    Табл.1. Сравнение паспортных характеристик различных моделей аппаратов для сварки ОВ.

    Сравнивая двух ведущих японских производителей, фирм-конкурентов, Sumitomo и Fujikura, можно увидеть, что их новейшие модели имеют приблизительно одинаковые характеристики. Более того, имея опыт работы и с тем, и с другим оборудованием, можем с уверенностью утверждать, что возможности этих моделей одинаковы. Смело рекомендуем их для сварочных работ в самых ответственных случаях.

    Выбор в данном случае обычно диктуется личными пристрастиями и привычкой работать с аппаратами определенной фирмы. Кому-то может понравится, что в Sumitomo Type-82 есть два независимых нагревателя для термоусадочных гильз. А некоторых больше привлекает подход к конструкции скалывателя Fujikura CT-50, имеющего электроприводы, позволяющие управлять положением рабочего лезвия и встроенный модуль Bluetooth, с помощью которого скалыватель может работать совместно с аппаратом.

    Эти отличия носят субъективный характер и влияют только на удобство работы, да и то в отдельных случаях.

    Рис. 5. Сварочный аппарат Sumitomo Type-82C со скалывателем FC-6RS-C.

    Рис. 6. Сварочный аппарат Fujikura FSM-86S со скалывателем CT-50.

    Для тех, кто хочет узнать более подробно о работе Fujikura FSM-86S и его отличиях от предыдущих моделей, рекомендуем ознакомиться с нашим видеообзором:

  • Также этой модели была посвящена обзорная статья с подробным описанием всех улучшений и нововведений.

    Помимо сварочного аппарата и скалывателя для успешной пайки ОВ необходимо иметь следующие инструменты и расходные материалы:

    • стриппер для снятия защитного акрилового покрытия с ОВ (рис. 7);
    • безворсовые салфетки для удаления пыли и остатков покрытия ОВ (рис. 8);
    • изопропиловый спирт для протирки ОВ (рис. 9);
    • КДЗС (комплект деталей защиты соединения), термоусадочные гильзы для защиты сростков (рис.10).

    Рис. 7. Стриппер для зачистки ОВ фирмы Miller.

    Рис. 8. Безворсовые салфетки Kimwipes.

    Рис. 9. Изопропиловый спирт.

    Рис. 10. Термоусадочные гильзы или КДЗС.

    Источник

  • Adblock
    detector